Python: Running Ping, Traceroute and More

Last year I needed to figure out a way to get the following information with Python: get the route table, capture the data from pinging a series of IPs, run tracert and get information about the NIC(s) installed. This all needed to be done on a Windows machine as it was part of a diagnostics script to try to figure out why the machine (usually a laptop) wouldn't connect to our VPN. I ended up creating a wxPython GUI to make it easy for the user to run, but these scripts will work just fine without wx. Let's see what they look like!

The Main Script

To start with, we'll look at the entire script and then go over each important piece. If you'd like to use the code below, you will need wxPython and the PyWin32 package.

import os
import subprocess
import sys
import time
import win32com.client
import win32net
import wx

filename = r"C:\logs\nic-diag.log"

class RedirectText:
    def __init__(self,aWxTextCtrl):
        self.out=aWxTextCtrl
        
        if not os.path.exists(r"C:\logs"):
            os.mkdir(r"C:\logs")
        self.filename = open(filename, "w")

    def write(self,string):
        self.out.WriteText(string)
        if self.filename.closed:
            pass
        else:
            self.filename.write(string)
 
class MyForm(wx.Frame):

    #---------------------------------------------------------------------- 
    def __init__(self):
        wx.Frame.__init__(self, None, wx.ID_ANY, "Diagnostic Tool")
 
        # Add a panel so it looks the correct on all platforms
        panel = wx.Panel(self, wx.ID_ANY)
        log = wx.TextCtrl(panel, wx.ID_ANY, size=(300,100),
                          style = wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL)
        # log.Disable()
        btn = wx.Button(panel, wx.ID_ANY, 'Run Diagnostics')
        self.Bind(wx.EVT_BUTTON, self.onRun, btn)

        # Add widgets to a sizer        
        sizer = wx.BoxSizer(wx.VERTICAL)
        sizer.Add(log, 1, wx.ALL|wx.EXPAND, 5)
        sizer.Add(btn, 0, wx.ALL|wx.CENTER, 5)
        panel.SetSizer(sizer)

        # redirect text here
        self.redir=RedirectText(log)
        sys.stdout=self.redir
    
    #----------------------------------------------------------------------    
    def runDiagnostics(self):
        """
        Run some diagnostics to get the machine name, ip address, mac,
        gateway, DNS, route tables, etc
        """
        # create the route table:
        # based on the following list comp from http://win32com.goermezer.de/content/view/220/284/
        # route_table = [elem.strip().split() for elem in os.popen("route print").read().split("Metric\n")[1].split("\n") if re.match("^[0-9]", elem.strip())]
        route_table = []
        proc = subprocess.Popen("route print", shell=True,
                        stdout=subprocess.PIPE)
        while True:
            line = proc.stdout.readline()
            route_table.append(line.strip().split())
            if not line: break
        proc.wait()
        
        print "Log Created at %s" % time.ctime()
        print "----------------------------------------------------------------------------------------------"
        info = win32net.NetWkstaGetInfo(None, 102)
        self.compname = info["computername"]
        print "Computer name: %s\n" % self.compname
        
        print "----------------------------------------------------------------------------------------------"
        print "Route Table:"
        print "%20s\t %15s\t %15s\t %15s\t %s" % ("Network Destination", "Netmask",
                                          "Gateway", "Interface", "Metric")
        for route in route_table:
            if len(route) == 5:
                dst, mask, gateway, interface, metric = route
                print "%20s\t %15s\t %15s\t %15s\t %s" % (dst, mask, gateway, interface, metric)
            
        print "----------------------------------------------------------------------------------------------\n"
        ips = ["65.55.17.26", "67.205.46.185", "67.195.160.76"]
        for ip in ips:
            self.pingIP(ip)
            print
            self.tracertIP(ip)
            print "\n----------------------------------------------------------"
        self.getNICInfo()
        print "############ END OF LOG ############"
     
    #----------------------------------------------------------------------   
    def pingIP(self, ip):
        proc = subprocess.Popen("ping %s" % ip, shell=True, 
                                stdout=subprocess.PIPE) 
        print
        while True:
            line = proc.stdout.readline()                        
            wx.Yield()
            if line.strip() == "":
                pass
            else:
                print line.strip()
            if not line: break
        proc.wait()
    
    #----------------------------------------------------------------------
    def tracertIP(self, ip):
        proc = subprocess.Popen("tracert -d %s" % ip, shell=True, 
                                stdout=subprocess.PIPE)
        print 
        while True:
            line = proc.stdout.readline()
            wx.Yield()
            if line.strip() == "":
                pass
            else:
                print line.strip()
            if not line: break
        proc.wait()

    #----------------------------------------------------------------------            
    def getNICInfo(self):
        """
        http://www.microsoft.com/technet/scriptcenter/scripts/python/pyindex.mspx?mfr=true
        """
        print "\nInterface information:\n"
        strComputer = "."
        objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
        objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")
        colItems = objSWbemServices.ExecQuery("Select * from Win32_NetworkAdapterConfiguration")
        numOfNics = len(colItems)
        count = 1
        for objItem in colItems:
            # if the IP interface is enabled, grab its info
            print "***Interface %s of %s***" % (count, numOfNics)
            if objItem.IPEnabled == True:                
                print "Arp Always Source Route: ", objItem.ArpAlwaysSourceRoute
                print "Arp Use EtherSNAP: ", objItem.ArpUseEtherSNAP
                print "Caption: ", objItem.Caption
                print "Database Path: ", objItem.DatabasePath
                print "Dead GW Detect Enabled: ", objItem.DeadGWDetectEnabled
                z = objItem.DefaultIPGateway
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "Default IP Gateway: ", x
                print "Default TOS: ", objItem.DefaultTOS
                print "Default TTL: ", objItem.DefaultTTL
                print "Description: ", objItem.Description
                print "DHCP Enabled: ", objItem.DHCPEnabled
                print "DHCP Lease Expires: ", objItem.DHCPLeaseExpires
                print "DHCP Lease Obtained: ", objItem.DHCPLeaseObtained
                print "DHCP Server: ", objItem.DHCPServer
                print "DNS Domain: ", objItem.DNSDomain
                z = objItem.DNSDomainSuffixSearchOrder
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "DNS Domain Suffix Search Order: ", x
                print "DNS Enabled For WINS Resolution: ", objItem.DNSEnabledForWINSResolution
                print "DNS Host Name: ", objItem.DNSHostName
                z = objItem.DNSServerSearchOrder
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "DNS Server Search Order: ", x
                print "Domain DNS Registration Enabled: ", objItem.DomainDNSRegistrationEnabled
                print "Forward Buffer Memory: ", objItem.ForwardBufferMemory
                print "Full DNS Registration Enabled: ", objItem.FullDNSRegistrationEnabled
                z = objItem.GatewayCostMetric
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "Gateway Cost Metric: ", x
                print "IGMP Level: ", objItem.IGMPLevel
                print "Index: ", objItem.Index
                z = objItem.IPAddress
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IP Address: ", x
                print "IP Connection Metric: ", objItem.IPConnectionMetric
                print "IP Enabled: ", objItem.IPEnabled
                print "IP Filter Security Enabled: ", objItem.IPFilterSecurityEnabled
                print "IP Port Security Enabled: ", objItem.IPPortSecurityEnabled
                z = objItem.IPSecPermitIPProtocols
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IP Sec Permit IP Protocols: ", x
                z = objItem.IPSecPermitTCPPorts
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IP Sec Permit TCP Ports: ", x
                z = objItem.IPSecPermitUDPPorts
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IPSec Permit UDP Ports: ", x
                z = objItem.IPSubnet
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IP Subnet: ", x
                print "IP Use Zero Broadcast: ", objItem.IPUseZeroBroadcast
                print "IPX Address: ", objItem.IPXAddress
                print "IPX Enabled: ", objItem.IPXEnabled
                z = objItem.IPXFrameType
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IPX Frame Type: ", x
                print "IPX Media Type: ", objItem.IPXMediaType
                z = objItem.IPXNetworkNumber
                if z is None:
                    a = 1
                else:
                    for x in z:
                        print "IPX Network Number: ", x
                print "IPX Virtual Net Number: ", objItem.IPXVirtualNetNumber
                print "Keep Alive Interval: ", objItem.KeepAliveInterval
                print "Keep Alive Time: ", objItem.KeepAliveTime
                print "MAC Address: ", objItem.MACAddress
                print "MTU: ", objItem.MTU
                print "Num Forward Packets: ", objItem.NumForwardPackets
                print "PMTUBH Detect Enabled: ", objItem.PMTUBHDetectEnabled
                print "PMTU Discovery Enabled: ", objItem.PMTUDiscoveryEnabled
                print "Service Name: ", objItem.ServiceName
                print "Setting ID: ", objItem.SettingID
                print "Tcpip Netbios Options: ", objItem.TcpipNetbiosOptions
                print "Tcp Max Connect Retransmissions: ", objItem.TcpMaxConnectRetransmissions
                print "Tcp Max Data Retransmissions: ", objItem.TcpMaxDataRetransmissions
                print "Tcp Num Connections: ", objItem.TcpNumConnections
                print "Tcp Use RFC1122 Urgent Pointer: ", objItem.TcpUseRFC1122UrgentPointer
                print "Tcp Window Size: ", objItem.TcpWindowSize
                print "WINS Enable LMHosts Lookup: ", objItem.WINSEnableLMHostsLookup
                print "WINS Host Lookup File: ", objItem.WINSHostLookupFile
                print "WINS Primary Server: ", objItem.WINSPrimaryServer
                print "WINS Scope ID: ", objItem.WINSScopeID
                print "WINS Secondary Server: ", objItem.WINSSecondaryServer
                print "-------------------------------------------------------\n"
            else:
                print "Interface is disabled!\n"
            count += 1

    #----------------------------------------------------------------------
    def onRun(self, event):
        self.runDiagnostics()
        self.redir.filename.close()
        # Restore stdout to normal
        sys.stdout = sys.__stdout__

#----------------------------------------------------------------------         
# Run the program
if __name__ == "__main__":
    app = wx.PySimpleApp()
    frame = MyForm().Show()
    app.MainLoop()

As with most Python programs, this one starts out with various imports. Next we create a a simple class (RedirectText) that we will use to help us redirect stdout to a wx.TextCtrl and a log file. This works by passing in an instance of wx.TextCtrl and then setting "sys.stdout" to point to it (see the __init__ method in the MyForm class). Following the RedirectText class, we have the MyForm class which is where we create out wxPython GUI. There's actually not much to the GUI itself. Just a multi-line text control and a button on a panel, but that's all we need. The rest of the class is made up of methods that gather all our required information and log it to the screen and to a file.

Let's take a look at those methods now! Note that these methods are called from the runDiagnostics method which is launched from the onRun button event handler.

Getting the Route Table (AKA: IP Routes)

When I looked into how to do this, I found the following script on another blog:

import os, re
route_table = [elem.strip().split() for elem in os.popen("route print").read().split("Metric\n")[1].split("\n") if re.match("^[0-9]", elem.strip())]

I found that rather hard to follow, so I re-wrote it (or found another example and forgot to make a note of it) like this:

route_table = []
proc = subprocess.Popen("route print", shell=True,
                stdout=subprocess.PIPE)
while True:
    line = proc.stdout.readline()
    route_table.append(line.strip().split())
    if not line: break
proc.wait()

print "----------------------------------------------------------------------------------------------"
print "Route Table:"
print "%20s\t %15s\t %15s\t %15s\t %s" % ("Network Destination", "Netmask",
                                  "Gateway", "Interface", "Metric")
for route in route_table:
    if len(route) == 5:
        dst, mask, gateway, interface, metric = route
        print "%20s\t %15s\t %15s\t %15s\t %s" % (dst, mask, gateway, interface, metric)

I find the code above much easier to read and understand. All it does is use the subprocess module to run "route print" and write the result to stdout. Don't be confused by the proc.stdout above. That's the process's stdout, not the normal stdout. We want to redirect that data to the normal stdout! To do that, we read the proc's stdout (or some might say, the PIPE) and append each line of data to a list. Then we create a nice custom output using Python's string formatting. Now let's take a look at how to use Python to run Ping and Tracert.

Running Ping / Tracert with Python

Pinging with Python is pretty easy. We just need the subprocess module to do it as you can see from this snippet:

def pingIP(self, ip):
    proc = subprocess.Popen("ping %s" % ip, shell=True, 
                            stdout=subprocess.PIPE) 
    print
    while True:
        line = proc.stdout.readline()                        
        wx.Yield()
        if line.strip() == "":
            pass
        else:
            print line.strip()
        if not line: break
    proc.wait()

In this code, we use wx.Yield to send the ping results to our text control in real time. If we didn't, then we wouldn't receive any of the ping results until ping had finished running. Note that we also use an infinite loop to grab the results. Once the results stop coming, we break out of the loop. If you look at the tracert code, you'll see that the only difference is in out subprocess.Popen command. This would be a good candidate for refactoring, but I'll leave that as an exercise for the reader.

Getting NIC Information with Python

Microsoft has a whole set of Python scripts on their Technet sub-site and I ended up using on them to get all kinds of good information on the Network Interface Cards (NIC) in our PCs. I won't reproduce the code here since it's long and we already have it above. However, it's pretty easy to follow and I suspect that you could use WMI to get the same information if you know what you're doing. The main part that we were interested in was the MAC and IP addresses. Let's just extract that info from the long code and see how easy it is to get:

strComputer = "."
objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")
colItems = objSWbemServices.ExecQuery("Select * from Win32_NetworkAdapterConfiguration")
numOfNics = len(colItems)

for objItem in colItems:
    z = objItem.IPAddress
    if z is None:
        a = 1
    else:
        for x in z:
             print "IP Address: ", x
    print "MAC Address: ", objItem.MACAddress

Pretty easy, huh? And look! You use what looks like SQL syntax to run the query. This is why I think you can probably use WMI (in fact, that may be what it's doing in an obtuse manner). Anyway, that's really all there is to it.

Wrapping Up

Now you know the secrets to get various bits of networking information from your PC and how to redirect subprocess's PIPEs to a log file and a wxPython text control. How you choose to use this information is up to you.

Copyright © 2025 Mouse Vs Python | Powered by Pythonlibrary